

项目文章

贝瑞基因科技服务事业部

2023年5月30日

BerryGenomics

目录

10x Genomics 单细胞/空间转录组	3
基因组 De novo	5
人基因组测序	7
转录调控	8
动植物重测序/微生物测序	12

地址: 北京市昌平区科技园区生命园路 4 号院 5 号楼

电话: 010-53259188

10x Genomics 单细胞/空间转录组

序号	时间	期刊	影响因子	物种和组 织类型	名称
1	2016.6	Cell Discovery	4.6	小鼠生殖细胞	Identification of key factors conquering developmental arrest of somatic cell cloned embryos by combining embryo biopsy and single-cell sequencing
2	2016.9	Nature	38.138	小鼠胚胎	Distinct features of H3K4me3 and H3K27me3 chromatin domains in pre-implantation embryos
3	2017.2	Nature Protocols	9.646	小鼠胚胎	Spatial transcriptomic analysis of cryosectioned tissue samples with Geo-seq
4	2017.2	Journal of Biological Chemistry	4.125	小鼠卵母 细胞和胚 胎组织	Maternal <i>Sall4</i> is Indispensable for Epigenetic Maturation of Mouse Oocytes
5	2019.2	Nature Genetics	27.125	小鼠肺多 功能干细 胞	Lung regeneration by multipotent stem cells residing at the bronchioalveolar duct junction
6	2019.8	Nature	41.577	小鼠胚胎	Molecular architecture of lineage allocation and tissue organization in early mouse embryo
7	2019.9	Cell Research	17.848	人胚胎细 胞	Tracing the first hematopoietic stem cell generation in human embryo by single-cell RNA sequencing
8	2019.10	Immunity	21.522	人胚胎细 胞	Single-cell RNA Sequencing Resolves Spatiotemporal Development of Pre-thymic Lymphoid Progenitors and Thymus Organogenesis in Human Embryos
9	2020.3	Cell Discovery	4.6	人外周血	Immune Cell Profiling of COVID-19 Patients in the Recovery Stage by Single-Cell Sequencing
10	2020.5	Nature	41.577	人胚胎细 胞	Deciphering human macrophage development at single-cell resolution
11	2020.6	Gut	19.819	人胃肿瘤 组织和正 常胃黏膜 组织	Dissecting transcriptional heterogeneity in primary gastric adenocarcinoma by single cell RNA sequencing
12	2020.7	Journal of Hepatology	20.58	人肝内胆 管肿瘤组 织及癌旁 组织	Single cell transcriptomic architecture and intercellular crosstalk of human intrahepatic cholangiocarcinoma
13	2020.8	Protein&Cell	10.16	人血液、 痰液和咽 拭子	A human circulating immune cell landscape in aging and COVID-19
14	2020.8	Nature Communication	12.12	人外周血	Single-cell analysis of two severe COVID-19 patients reveals a monocyte-associated and tocilizumab-responding cytokine storm
15	2020.9	PNAS	9.41	人外周血	Genetic landscape and autoimmunity of monocytes in developing Vogt-Koyanagi-Harada disease
16	2020.10	Nature Communications	11.33	小鼠卵母 细胞	Single-cell RNA cap and tail sequencing (scRCAT-seq) reveals subtype-specific isoforms differing in transcript demarcation

地址: 北京市昌平区科技园区生命园路 4 号院 5 号楼 股票代码: 000710

17	2019.9	Cell Research	17.848	人胚胎细 胞	Tracing the first hematopoietic stem cell generation in human embryo by single-cell RNA sequencing
18	2021.1	Cell Research	17.85	人胚胎细 胞	Dissecting human embryonic skeletal stem cell ontogeny by single-cell transcriptomic and functional analyses
19	2021.2	Cell	38.64	人外周血	COVID-19 immune features revealed by a large-scale single cell transcriptome atlas
20	2021.3	Cancer Reaearch	9.73	人乳腺肿 瘤组织及 正常乳腺 组织	Single-cell RNA sequencing reveals the cellular origin and evolution of breast cancer in <i>BRCA1</i> mutation carriers
21	2021.3	Theranostics	8.58	小鼠卵巢 组织	Single-cell transcriptomic profiling provides insights into the toxic effects of Zearalenone exposure on primordial follicle assembly
22	2021.3	Theranostics	8.58	小鼠卵巢 组织	Single-cell transcriptome dissection of the toxic impact of Di (2-ethylhexyl) phthalate on primordial follicle assembly
23	2021.6	Nature Cell Biology	28.82	人外周血	Single-cell epigenomic landscape of peripheral immune cells reveals establishment of trained immunity in individuals convalescing from COVID-19
24	2021.6	Journal of Genetics and Genomics	4.79	水稻及拟 南芥根	Single-cell transcriptome atlas of the leaf and root of rice seedlings
25	2021.7	Cell Research	17.85	人胚胎细 胞	Delineating spatiotemporal and hierarchical development of human fetal innate lymphoid cells
26	2021.8	PNAS	9.41	人外周血	Effects of sex and aging on the immune cell landscape as assessed by single-cell transcriptomic analysis
27	2021.8	Cell Discovery	4.6	人外周血	Integrated single-cell analysis revealed immune dynamics during Ad5-nCoV immunization
28	2021.8	Bone Research	13.56	人椎间盘 组织	The spatially-defined single-cell transcriptional profiling uncovers diversified chondrocyte subtypes and nucleus pulposus progenitors in human intervertebral discs
29	2021.11	Protein&Cell	8.014	小鼠视网 膜	Aging weakens Th17 cell pathogenicity and ameliorates experimental autoimmune uveitis in mice
30	2021.12	eLife	6.67	人嗜铬细 胞瘤和肾 上腺皮质 腺瘤	Single-cell transcriptome analysis identifies a unique tumor cell type producing multiple hormones in ectopic ACTH and CRH secreting pheochromocytoma
31	2022.1	Cell Research	17.848	小鼠胚胎 和人胚胎	Heterogeneity in endothelial cells and widespread venous arterialization during early vascular development in mammals
32	2022.2	Advanced Science	16.8	小鼠肾脏 组织	Single Cell RNA Sequencing Identifies a Unique Inflammatory Macrophage Subset as a Druggable Target For Alleviating Acute Kidney Injury
33	2022.6	Cell Discovery	10.85	人外周血	Decoding lymphomyeloid divergence and immune hyporesponsiveness in G-CSF-primed human bone marrow by single-cell RNA-seq
34	2022.7	Cancer Communications	15.283	人宫颈鳞 状细胞癌 组织	Pivotal roles of tumor-draining lymph nodes in the abscopal effects from combined immunotherapy and radiotherapy

地址:北京市昌平区科技园区生命园路 4号院 5号楼

电话: 010-53259188

35	2022.11	Cancer Cell	38.585	小鼠前列 腺肿瘤样 本	FOXA2 drives lineage plasticity and KIT pathway activation in neuroendocrine prostate cancer
36	2023.1	Science Advances	14.957	人宫颈组 织	Single-cell dissection of cellular and molecular features underlying human cervical squamous cell carcinoma initiation and progression
37	2023.2	Nature Communications	17.694	蜘蛛大壶 状腺	A molecular atlas reveals the tri-sectional spinning mechanism of spider dragline silk
38	2023.3	Cell Discovery	38.079	肝细胞癌 组织	CD36+ cancer-associated fibroblasts provide immunosuppressive microenvironment for hepatocellular carcinoma via secretion of macrophage migration inhibitory factor
39	2023.3	Military Medical Research	34.915	豚鼠皮肤 组织	Investigation of the cell composition and gene expression in the delayed-type hypersensitivity tuberculin skin test

基因组 De novo

序号	时间	期刊	影响因子	物种	名称
1	2017.4	Molecular Plant	8.827	芜菁	Brassica rapa Genome 2.0: a reference upgrade through sequence re-assembly and gene reannotation
2	2017.8	National Science Review	2.9	橡胶草	Genome analysis of <i>Taraxacum kok-saghyz</i> Rodin provides new insights into rubber biosynthesis
3	2017.11	Nature Communications	12.124	扇贝	Scallop genome reveals molecular adaptations to semi-sessile life and neurotoxins
4	2018.3	Nature Communications	12.124	美洲蟑螂	The genomic and functional landscapes of developmental plasticity in the American cockroach.
5	2018.7	Nature Genetics	27.959	玉米	Extensive intraspecific gene order and gene structural variations between Mo17 and other maize genomes
6	2018.7	Science China- Life Science	3.085	大豆	De novo assembly of a Chinese soybean genome
7	2019.1	Nature Communications	12.353	糜子	Chromosome conformation capture resolved near complete genome assembly of broomcorn millet
8	2019.3	Nature Genetics	27.125	棉花	Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton
9	2019.3	Molecular Plant	9.326	花生	Sequencing of cultivated peanut, <i>Arachis hypogaea</i> , yields insights into genome evolution and oil improvement
10	2019.4	Genome Biology	13.214	开心果	Whole genomes and transcriptomes reveal adaptation and domestication of pistachio
11	2019.8	Plant Biotechnology Journal	6.84	杜梨	De novo assembly of a wild pear (<i>Pyrus betuleafolia</i>) genome
12	2019.9	Plant Biotechnology Journal	6.84	澳洲棉	Genome sequencing of the Australian wild diploid species <i>Gossypium austral</i> highlights disease resistance and delayed gland morphogenesis
13	2019.9	BioRxiv	-	家猪	Chromosome-scale <i>de novo</i> assembly and phasing of a Chinese indigenous pig genome

地址:北京市昌平区科技园区生命园路 4号院 5号楼

电话: 010-53259188

	•				
14	2019.10	Nature Communications	13.691	胡椒	The chromosome-scale reference genome of black pepper provides insight into piperine biosynthesis
15	2019.11	Molecular Plant	9.326	薏苡	Evolution and domestication footprints uncovered from the genomes of coix
16	2020.3	Genome Biology	13.214	芒果	The genome evolution and domestication of tropical fruit mango
17	2020.4	Science	34.661	小麦	Horizontal gene transfer of Fhb7 from fungus underlies Fusarium head blight resistance in wheat
18	2020.6	Cell	36.219	大豆	Pan-genome of wild and cultivated soybeans
19	2020.8	NPJ Genomic Medicine	5.63	人	Identifification of a likely pathogenic structural variation in the <i>LAMA1</i> gene by Bionano optical mapping
20	2020.11	PNAS	9.58	金鱼	The evolutionary origin and domestication history of goldfish (<i>Carassius auratus</i>)
21	2020.12	Molecular Ecology	5.163	绿头野鸭、北京鸭	A SNP variant located in the <i>cis</i> -regulatory region of the <i>ABCG2</i> gene is associated with mallard egg color
22	2021.2	Cell	38.64	野生稻	A route to de novo domestication of wild allotetraploid rice
23	2021.2	Journal of Genetics and Genomics	4.78	榕小蜂	Genomes of 12 fig wasps provide insights into the adaptation of pollinators to fig syconia
24	2021.3	Molecular Ecology Resources	6.29	牡蛎	Construction of a chromosome-level genome and variation map for the Pacific oyster <i>Crassostrea gigas</i>
25	2021.8	Molecular Plant	9.326	萝卜	Pan-genome of <i>Raphanus</i> highlights genetic variation and introgression among domesticated, wild and weedy radishes
26	2021.8	The Crop Journal	4.4	玉米	Genome assembly of the maize inbred line A188 provides a new reference genome for functional genomics
27	2021.11	Cell Reports	8.807	人	NyuWa Genome resource: A deep whole-genome sequencing-based variation profile and reference panel for the Chinese population
28	2022.1	Genome Biology	13.214	油茶	The genome of oil-Camellia and population genomics analysis provide insights into seed oil domestication
29	2022.1	Genome Biology and Evolution	3.416	切叶蜂	Chromosome-Level Genome Assembly of Anthidium xuezhong i Niu & Zhu, 2020 (Hymenoptera: Apoidea: Megachilidae: Anthidiini)
30	2022.2	Cell Systems	10.304	人(土家族)	Haplotype-resolved de nopo assembly of a Tujia genome suggests the necessity for high- quality population-specific genome references
31	2022.5	Molecular Plant	9.326	二色补血草	The genome of the recretohalophyte Limonium bicolor provides insights into salt gland development and salinity adaptation during terrestrial evolution
32	2022.6	Nature Communication s	17.6939	广藿香	Chromosome-level and haplotype-resolved genome provides insight into the tetraploid hybrid origin of patchouli
33	2022.6	Molecular Plant	21.95	西瓜	A telomere-to-telomere gap-free reference genome of watermelon and its mutation library provide important resources for gene discovery and breeding

地址:北京市昌平区科技园区生命园路 4号院 5号楼

电话: 010-53259188

34	2022.6	Plant Biotechnology Journal	13.2632	水稻	The telomere-to-telomere gap-free genome of four rice parents reveals SV and PAV patterns in hybrid rice breeding
35	2022.11	Cell Reports	9.995	果实蝇	Behavioral and genomic divergence between a generalist and a specialist fly
36	2022.12	Nucleic Acids Research	19.16	萝卜×甘 蓝 (RRCC)异源四 倍体	Characterization and acceleration of genome shuffling and ploidy reduction in synthetic allopolyploids by genome sequencing and editing
37	2023.3	The Plant Journal	7.091	木麻黄	Chromosome-scale de novo genome assembly and annotation of three representative Casuarina species: C. equisetifolia, C. glauca, and C. cunninghamiana
38	2023.3	Nature Plants	17.352	甘蔗	A complete gap-free diploid genome in Saccharum complex and the genomic footprints of evolution in the highly polyploid Saccharum genus
39	2023.4	Journal of Genetics and Genomics	5.723	马铃薯甲 虫	Haplotype-resolved and chromosome-level genome assembly of Colorado potato beetle

人基因组测序

序号	时间	期刊	影响因子	物种和组 织类型	名称
1	2016.1	Stem Cells Translational Medicine	4.247	人成纤维 细胞和小 鼠胚胎	Naive Induced Pluripotent Stem Cells Generated From beta-Thalassemia Fibroblasts Allow Efficient Gene Correction With CRISPR/Cas9
2	2017.8	Human Genetics	4.637	人和小鼠 的卵细胞	Dosage effects of ZP2 and ZP3 heterozygous mutations cause human infertility
3	2019.10	Molecular Psychiatry	11.97	人外周血	Mutations in <i>ASH1L</i> confer susceptibility to Tourette syndrome
4	2019.10	Ultrasound Obstet Gynecol	5.60	人外周血	The contribution of single-gene defects to congenital cardiac left-sided lesions in the prenatal setting
5	2020.3	Nucleic Acids Research	11.50	人海拉细 胞	Histone variant H2A.Z regulates nucleosome unwrapping and CTCF binding in mouse ES cells
6	2020.2	Science Advances	13.12	人胃肿瘤 组织和正 常胃黏膜 组织	Multi-omics characterization of molecular features of gastric cancer correlated with response to neoadjuvant chemotherapy
7	2020.11	BioMed Reseach International	2.36	人外周血	Identification of a Novel Variant of <i>ARHGAP29</i> in a Chinese Family with Nonsyndromic Cleft Lip and Palate
8	2020.11	Frontiers in Genetics	3.26	人心脏组 织	Characterization of a Novel <i>NONO</i> Intronic Mutation in a Fetus with X-Linked Syndromic Mental Retardation-34
9	2021.3	BioMed Reseach International	2.36	人外周血	A Novel <i>COMP</i> Mutated Allele Identified in a Chinese Family with Pseudoachondroplasia

地址:北京市昌平区科技园区生命园路 4号院 5号楼

电话: 010-53259188

10	2021.8	Frontiers in Genetics	3.258	人外周血	A Novel Gross Deletion in <i>PAX3</i> (10.26 kb) Identified in a Chinese Family With Waardenburg Syndrome by Third-Generation Sequencing
11	2021.11	Cell Reports	8.807	人外周血	NyuWa Genome resource: A deep whole- genome sequencing-based variation profile and reference panel for the Chinese population
12	2021.12	bioRxiv		人外周血	B.1.1.529 escapes the majority of SARS-CoV-2 neutralizing antibodies of diverse epitopes
13	2022.2	Science	34.661	人外周血	Highly enriched BEND3 prevents the premature activation of bivalent genes during differentiation
14	2022.4	Nature Cell Biology	28.824	小鼠胚胎 组织	Allele-specific H3K9me3 and DNA methylation co-marked CpG-rich regions serve as potential imprinting control regions in preimplantation embryo
15	2022.5	Cell Reports	8.807	小鼠胚胎 组织	Aberrant H3K4me3 modification of epiblast genes of extraembryonic tissue causes placental defects and implantation failure in mouse IVF embryos
16	2022.5	Science	34.661	小鼠胚胎 组织	FTO mediates LINE1 m6A demethylation and chromatin regulation in mESCs and mouse development
17	2023.2	The Journal of Cardiovascular Aging		人外周血	Reassessment of genes associated with dilated and hypertrophic cardiomyopathy in a Chinese Han population

转录调控

序号	时间	期刊	影响因子	物种	名称
1	2016.1	Nature	12.124	小鼠	LSD1 co-repressor Rcor2 orchestrates
	2010.1	Communications	121121	7 111	neurogenesis in the developing mouse brain
					Hierarchical Oct4 Binding in Concert with Primed
2	2016.2	Cell Report	7.87	小鼠	Epigenetic Rearrangements during Somatic Cell
					Reprogramming
					REF6 recognizes a specific DNA sequence to
2	2016.4	Nature Genetics	27.959	拟南芥	demethylate H3K27me3 and regulate organ
					boundary formation in Arabidopsis.
					Identification of TRA2B-DNAH5 fusion as a
3	2016.9	Cell Research	14.812	人	novel oncogenic driver in human lung squamous
					cell carcinoma
					Serial sequencing of isolength RAD tags for cost-
4	2016.10	Nature Protocols	9.646	人	efficient genome-wide profiling of genetic and
					epigenetic variations
		Scientific			The genetic map of goldfish (Carassius auratus)
5	2016.10		5.2	斑马鱼	provided insights to the divergent genome
		Reports			evolutions in the Cyprinidae family
	2016 10	Caiana.	24.661	地古女	Photoactivation and inactivation of <i>Arabidopsis</i>
6	2016.10	Science	34.661	拟南芥	cryptochrome 2

地址: 北京市昌平区科技园区生命园路 4 号院 5 号楼

电话: 010-53259188

					CIDMO
7	2016.11	Scientific Reports	5.2	人和小鼠	SUMO-specific protease 3 is a key regulator for hepatic lipid metabolism in non-alcoholic fatty liver disease
8	2017.1	Nature Communications	12.124	小鼠	BCAS2 is involved in alternative mRNA splicing in spermatogonia and the transition to meiosis
9	2017.1	Cell Reports	7.87	小鼠	Opposing Roles of Acetylation and Phosphorylation in LIFR-Dependent Self- Renewal Growth Signaling in Mouse Embryonic Stem Cells
10	2017.3	Biomaterials	8.402	小鼠	Direct induction of neural progenitor cells transiently passes through a partially reprogrammed state
11	2017.3	Journal of Biological Chemistry	4.125	人	Transcriptome analysis reveals determinant stages controlling human embryonic stem cell commitment to neuronal cells
12	2017.3	Nature Immunology	20.479	小鼠	The metabolic ER stress sensor IRE1α suppresses alternative activation of macrophages and impairs energy expenditure in obesity
13	2017.3	Nature Communications	11.329	小麦	Wheat <i>Ms2</i> encodes for an orphan protein that confers male sterility in grass species
14	2017.3	Nature Communications	11.329	水稻	A natural tandem array alleviates epigenetic repression of <i>IPA1</i> and leads to superior yielding rice
15	2017.5	National Science Review	8.843	小鼠	Lineage specification of early embryos and embryonic stem cells at the dawn of enabling technologies
16	2017.5	eLife	7.725	小鼠和人	Nkx2.5 marks angioblasts that contribute to hemogenic endothelium of the endocardium and dorsal aorta
17	2017.5	Cell Research	14.812	小鼠	Class I histone deacetylases are major histone decrotonylases evidence for critical and broad function of histone crotonylation in transcription
18	2017.6	Scientific Reports	5.2	黄瓜	Transcriptome profiling of <i>Cucumis metuliferus</i> infected by <i>Meloidogyne incognita</i> provides new insights into putative defense regulatory network in Cucurbitaceae
19	2017.6	Cell Stem Cell	23.394	小鼠	RNA Helicase DDX5 Inhibits Reprogramming to Pluripotency by miRNA-Based Repression of RYBP and its PRC1-Dependent and -Independent Functions
20	2017.7	Molecular Psychiatry	13.204	人	Reduced TRPC6 mRNA levels in the blood cells of patients with Alzheimer's disease and mild cognitive impairment
21	2017.7	Oncotarget	5.165	小鼠	High throughput sequencing identifies an imprinted gene, <i>Grb10</i> , associated with the pluripotency state in nuclear transfer embryonic stem cells
22	2017.7	The Plant Cell	9.251	番茄	MYC2 orchestrates a hierarchical transcriptional cascade that regulates jasmonate-mediated plant immunity in tomato.
23	2017.7	Scientific Reports	4.259	小鼠	Abnormal Paraventricular Nucleus of Hypothalamus and Growth Retardation Associated with Loss of Nuclear Receptor Gene COUP-TFII
24	2017.8	Genome Biology	11.12	蕨类植 物,石松 植物	Conservation and divergence of small RNA pathways and microRNAs in land plants

地址:北京市昌平区科技园区生命园路4号院5号楼

电话: 010-53259188

	ı	T 10			Trop II I G A I I
~~		Journal of		1 63	IP3R-mediated Ca2+ signals govern
25	2017.8	Molecular Cell	5.988	小鼠	hematopoietic and cardiac divergence of Flk1+
		Biology			cells via the calcineurin-NFATc3-Etv2 pathway
26	2017.9	Genome	11.88	线虫	Trans-splicing enhances translational efficiency in
20	2017.7	Research	11.00	以五	C. elegans
27	2017.0	Omantomont	5 165	小、臼	Pkm2 can enhance pluripotency in ESCs and
27	2017.9	Oncotarget	5.165	小鼠	promote somatic cell reprogramming to iPSCs
20	2017 10	777.6	0.56	List - t- t-t-	Mediator subunit MED25 links the jasmonate
28	2017.10	PNAS	8.56	拟南芥	receptor to transcriptionally active chromatin
				1 1	Additive-effect pattern of both ZP2 and ZP3 in
29	2017.11	Human Genetics	4.637	人和小鼠	human and mouse
					Oocyte-Specific Homeobox 1, <i>Obox1</i> , Facilitates
		Stem Cell			Reprogramming by Promoting Mesenchymal-to-
30	2017.11	Reports	7.338	小鼠	Epithelial Transition and Mitigating Cell
		Reports			Hyperproliferation
					Inference of differentiation time for single cell
31	2017.11	Nature	11 220	小鼠	
31	2017.11	Communications	11.329	71.00	transcriptomes using cell population reference
					data
32	2017.12	Cell Reports	8.282	小鼠	Protein Expression Landscape of Mouse Embryos
	2017/112	our reports	0.202	3 110	during Pre-implantation Development
					Unique molecular events during reprogramming
33	2018.1	eLife	7.725	人	of human somatic cells to induced pluripotent
					stem cells (iPSCs) at na we state
		Call Dandh and			Efficient generation of functional haploid
34	2018.1	Cell Death and	8.339	人	spermatids from human germline stem cells by
		Differentiation			three-dimensional-induced system
					Silencing of developmental genes by H3K27me3
				1 67	and DNA methylation reflects the discrepant
35	2018.2	Cell Research	14.812	小鼠	plasticity of embryonic and extraembryonic
					lineages
					Reduced Self-Diploidization and Improved
		Stem Cell			Survival of Semi-cloned Mice Produced from
36	2018.2		5.499	小鼠	Androgenetic Haploid Embryonic Stem Cells
		Reports			
					through Overexpression of <i>Dnmt3b</i>
27	2010.2	G .:	4.075	T 10	Maize <i>Dek37</i> Encodes a P-Type PPR protein that
37	2018.3	Genetics	4.075	玉米	affects cis-splicing of mitochondrial nad2 intron 1
					and seed development
		Nature Cell		,	Reprogramming of H3K9me3-dependent
38	2018.3	Biology	20.06	小鼠	heterochromatin during mammalian embryo
					development
		Journal of			TGFβ signaling hyperactivation-induced
39	2018.4	Molecular Cell	5.598	小鼠	tumorigenicity during the derivation of neural
		Biology			progenitors from mouse ESCs
40	2019.7	Stem Cell	6.527	小 臼	Suppressing Nodal Signaling Activity Predisposes
40	2018.7	Reports	6.537	小鼠	Ectodermal Differentiation of Epiblast Stem Cells
		Development			•
41	2018.8	Growth&	1.176	小鼠	Mouse gastrulation: Attributes of transcription
		Differentiation			factor regulatory network for epiblast patterning
		,		1	Inhibition of Aberrant DNA Re-methylation
42	2018.9	Cell Stem Cell	23.29	小鼠	Improves Post-implantation Development of
74	2010.7	Cen Stein Cen	43.47	7,007	Somatic Cell Nuclear Transfer Embryos
		+		+	Accurate annotation of accessible chromatin in
43	2018.10.	Cell Research	15.393	小鼠	
				-	mouse and human primordial germ cells
	2010.10	Journal of	5.505	1 53	Esrrb plays important roles in maintaining self-
44	2018.10	Molecular Cell	5.595	小鼠	renewal of trophoblast stem cells (TSCs) and
		Biology			reprogramming somatic cells to induced TSCs.
45	2018.10	Genome Biology	13.214	大豆	DNA methylation footprints during
	2010.10	Scholic Biology	13.217	八业	soybeandomestication and improvement

股票代码: 000710

地址:北京市昌平区科技园区生命园路 4号院 5号楼

					Challe as formered at the control of the state of the sta
46	2018.11	Nature	41.577	小鼠	Stella safeguards the oocyte methylome by preventing de novo methylation mediated by
40	2010.11	rature	41.3//	/1, 66/	DNMT1
4.5	001011	Nature	10.24=		The disease resistance protein SNC1 represses the
47	2018.11	Communications	10.217	拟南芥	biogenesis of microRNAs and phased siRNAs
					Co-Expression Network Analysis and Hub Gene
48	2019.2	Genes	3.1	陆地棉	Selection for High-Quality Fiber in Upland Cotton
40	2017.2	Genes	J.1	「山ヶ四小田	(Gossypium hirsutum) Using RNA Sequencing
		37.			Analysis
49	2019.3	Nature Communications	12.353	小鼠	Znhit1 controls intestinal stem cell maintenance
		Journal of			by regulating H2A.Z incorporation Maize pentatricopeptide repeat protein DEK41
50	2019.4	Experimental	5.36	玉米	affects <i>cis</i> -splicing of mitochondrial <i>nad4</i> intron 3
		Botany	2.23	15/1	and is required for normal seed development
		j			A 3D Atlas of Hematopoietic Stem and Progenitor
51	2019.4	Cell Reports	8.032	斑马鱼	Cell Expansion by Multi-dimensional RNA-Seq
					Analysis
52	2019.5	Nature	13.691	果蝇	6mA-DNA-binding factor Jumu controls
		Communications		,,	maternal-to-zygotic transition upstream of Zelda
		Plant			Genome-wide quantitative trait loci reveal the genetic basis of cotton fifibre quality and yield-
53	2019.6	Biotechnology	6.84	棉花	related traits in a Gossypium hirsutum
		Journal			recombinant inbred line population
E 1	2010.6	Theoretical and	4 420	十丰	The anther-specific CYP704B is potentially
54	2019.6	Applied Genetics	4.439	大麦	responsible for MSG26 male sterility in barley.
					Characterization of the promoter, downstream
55	2019.7	Current Genetics	3.464	酵母	target genes and recognition DNA sequence of
	_01,,		2	H1 .4	Mhy1, a key flamentation-promoting transcription
					factor in the dimorphic yeast <i>Yarrowia lipolytica</i>
56	2019.11	Cell Research	14.812	黑水虻	Genomic landscape and genetic manipulation of the black soldier fly <i>Hermetia illucens</i> , a natural
50	2017.11	CON RESCRICI	17.012	六八八五	waste recycler
57	2010 12	NI	41.70	ı	H2A.Z facilitates licensing and activation of early
57	2019.12	Nature	41.58	人	replication origins
					Identification of alternatively spliced gene
58	2020.2	RNA Biology	4.18	茶花	isoforms and novel noncoding RNAs by
					singlemolecule long-read sequencing in Camellia
59	2020.2	Genome Biology	14.03	小鼠	Histone H3K27 acetylation is dispensable for enhancer activity in mouse embryonic stem cells
					DEAD-BOX RNA HELICASE 27 Regulates
60	2020.11	The Plant Cell	9.618	拟南芥	MicroRNA Biogenesis, Zygote Division and Stem
	2020.11	1 1 1	,.010	15/11/1	Cell Homeostasis
		A days 1			Inhibition of the PLK1-coupled cell cycle
61	2021.10	Advanced Science	16.8	人	machinery overcomes resistance to oxaliplatin
		Science			in colorectal cancer
62	2021.10	PLoS Genetics	5.11	家猪	Porcine ZBED6 regulates growth of skeletal
02	2021.10	1 LOD Genetics	J.11	沙 州	muscle and internal organs via multiple targets
63	2022.4	BMC Genomics	3.97	鸡	Diferential regulation of intramuscular fat
			5.71	/. 3	and abdominal fat deposition in chickens
	2022 5	Nature	17.604	ı	Cell fate roadmap of human primed-to-naive
64	2022.6	Communication	17.694	人	transition reveals preimplantation cell lineage
-		S			signatures RPA1 Controls Chromatin Architecture and
65	2022.7	Cell Reports	8.807	人	
		Cancer			Maintains Lipid Metabolic Homeostasis Cancer Cell Resistance to IFNg Can Occur via
66	2023.3	Immunology	12.02	人	Enhanced Double-Strand Break Repair Pathway
	2025.5	Research	14.04		Activity
		research		1	Thenrity

股票代码: 000710

地址:北京市昌平区科技园区生命园路 4号院 5号楼

67	2023.5	Biotechnology Journal	5.726	人	The effects of length and sequence of gRNA on Cas13b and Cas13d activity in vitro and in vivo
----	--------	--------------------------	-------	---	---

动植物重测序/微生物测序

序号	时间	期刊	影响因子	物种	名称
1	2016.4	PLoS Pathog	7.758	真菌	Biosynthesis of Antibiotic Leucinostatins in Biocontrol Fungus Purpureocillium lilacinum and Their Inhibition on Phytophthora Revealed by Genome Mining
2	2016.4	Nature Communications	11.329	高粱	Whole-genome sequencing reveals untapped genetic potential in Africa's indigenous cereal crop sorghum
3	2016.11	BMC Genomics	3.729	山羊	Genome-wide analysis reveals signatures of selection for important traits in domestic sheep from different ecoregions
4	2017.3	Nature Genetics	27.959	大豆	Natural variation at the soybean <i>J</i> locus improves adaptation to the tropics and enhances yield
5	2017.3	Molecular Plant	7.142	水稻	Natural Variation in the Promoter of <i>GSE5</i> Contributes to Grain Size Diversity in Rice
6	2017.4	Molecular Plant	7.142	大豆	A <i>PP2C-1</i> Allele Underlying a Quantitative Trait Locus Enhances Soybean 100-Seed Weight
7	2017.4	Science China Life Science	2.781	小鼠	The genome-wide molecular regulation of mouse gastrulation embryo
8	2017.5	Cell Research	15.606	小鼠	Baf60b-mediated ATM-p53 activation blocks cell identity conversion by sensing chromatin opening
9	2017.6	Neuroscience Bulletin	2.624	小鼠	Derivation of Haploid Neurons from Mouse Androgenetic Haploid Embryonic Stem Cells
10	2017.6	Cell Research	15.606	小鼠	CRISPR-Cas9-mediated genome editing in one blastomere of two-cell embryos reveals a novel Tet3 function in regulating neocortical development
11	2017.8	Genome Biology	11.12	大豆	Genome-wide association studies dissect the genetic networks underlying agronomical traits in soybean
12	2017.11	Nature Communications	11.329	水稻	NOG1 increases grain production in rice
13	2018.10	Nature Genetics	27.959	棉花	Resequencing of 243 diploid cotton accessions based on an updated A genome identifies the genetic basis of key agronomic traits
14	2018.10	Nature Communications	12.353	梅花	The genetic architecture of floral traits in the woody plant <i>Prunus mume</i>
15	2018.10	Molecular Plant	8.827	水稻	Control of grain size and weight by the OsMKKK10-OsMKK4-OsMAPK6 signaling pathway in rice
16	2018.10	Plant Biotechnology Journal	7.443	玉米	High-efficiency genome editing using a <i>dmc1</i> promoter-controlled CRISPR/Cas9 system in maize

股票代码: 000710

地址:北京市昌平区科技园区生命园路 4 号院 5 号楼

17	2018.10	Nature	12.353	北京鸭	An intercross population study reveals genes associated with body size and plumage color in
1,	2010.10	Communications	12.333	102(15)	ducks
18	2018.10	Nature Ecology and Evolution	10.965	家蚕	The evolutionary road from wild moth to domestic silkworm
19	2018.10	Nature Genetics	27.125	大豆、水稻、拟南 芥、番茄	Parallel selection on a dormancy gene during domestication of crops from multiple families
20	2018.10	Genome Biology	13.214	酵母	Reduced intrinsic DNA curvature leads to increased mutation rate
21	2018.11	Molecular Biology and Evolution	14.797	西藏绵羊	The genome landscape of Tibetan sheep reveals adaptive introgression from argali and the history of early human settlements on the Qinghai-Tibetan Plateau
22	2019.3	Zoologica Scripta	2.690	天牛	Diversification of mitogenomes in three sympatric Altica flea beetles (<i>Insecta</i> , <i>Chrysomelidae</i>)
23	2019.7	Molecular Biology and Evolution	14.797	柳莺	Ghost introgression' as a cause of deep mitochondrial divergence in a bird species complex
24	2019.7	Molecular Biology and Evolution	14.797	藏马	EPAS1 Gain-of-Function Mutation Contributes to High Altitude Adaptation in Tibetan Horses
25	2019.9	Nature Communications	11.878	小麦	An ancestral NB-LRR with duplicated 3'UTRs confers stripe rust resistance in wheat and barley
26	2019.9	Systematic Entomology	3.727	叶甲虫	The phylogeny of leaf beetles (<i>Chrysomelidae</i>) inferred from mitochondrial genomes
27	2019.11	Nature Genetics	27.959	西瓜	Resequencing of 414 cultivated and wild watermelon accessions identifies selection for fruit quality traits
28	2019.12	Nature Genetics	27.959	菜豆	Resequencing of 683 common bean genotypes identifies yield component trait associations across a north-south cline
29	2020.6	Molecular Biology and Evolution	14.797	地山雀	Comparative genomics reveals evolution of a beak morphology locus in a high-altitude songbird
30	2020.6	Nature Communications	13.691	绵羊	Whole-genome resequencing of wild and domestic sheep identifies genes associated with morphological and agronomic traits
31	2020.8	PNAS	9.142	谷子	DROOPY LEAF1 Controls Leaf Architecture by Orchestrating Early Brassinosteroid Signaling
32	2020.11	Nature Communications	11.878	番茄	FIS1 encodes a GA2-oxidase that regulates fruit firmness in tomato
33	2021.1	Genome Biology	13.214	苦荞	Resequencing of global Tartary buckwheat accessions reveals multiple domestication events and key loci associated with agronomic traits
34	2021.6	Nature Cell Biology	28.8	小鼠	Global profiling of RNA-binding protein target sites by LACE-seq
35	2021.9	Journal of Integrative Plant Biology	7.06	紫花苜蓿	A global alfalfa diversity panel reveals genomic selection signatures in Chinese varieties and genomic associations with root development
36	2021.11	Proceedings of the Royal Society B: Biological Sciences	4.62	阿纳鲳鲹	A single intronic SNP in splicing site of steroidogenic enzyme <i>hsd17b1</i> is associated with phenotypic sex in oyster pompano, <i>Trachinotus anak</i>
37	2021.11	PNAS	9.142	山雀	Parallel genomic responses to historical climate change and high elevation in East Asian songbirds

股票代码: 000710

地址:北京市昌平区科技园区生命园路 4号院 5号楼

38	2022.3	Systematic Biology	15.683	弾尾虫	Phylogenomics of Elongate-Bodied Springtails Reveals Independent Transitions from Aboveground to Belowground Habitats in Deep-Time
39	2022.3	Insect Science	3.262	小蜂蛾	Testing the systematic status of Homalictus and Rostrohalictus with weakened cross-vein groups within Halictini (Hymenoptera: Halictidae) using low-coverage whole-genome sequencing
40	2022.4	BMC Biology	7.431	木犀科	Phylogenomic approaches untangle early divergences and complex diversifications of the olive plant family
41	2022.6	Nature	49.962	番茄	Graph pangenome captures missing heritability and empowers tomato breeding
42	2023.5	Frontiers in Plant Science	6.627	番茄	Comparative analysis of chloroplast genomes of 29 tomato germplasms: genome structures, phylogenetic relationships, and adaptive evolution

地址:北京市昌平区科技园区生命园路4号院5号楼

电话: 010-53259188